maximal right ideal造句
例句與造句
- The first chapter , main instead " duo - ring " condition of " every maximal left ideal is gw - ideal " condition , study strongly regularities of gp - v - ring on this condition . lt is shown that ( 1 ) r is strongly regular iff r is left gp - v - ring whose maximal left ideals are gw - ideal . ( 2 ) r is strongly regular iff r is left gp - v - ring whose maximal right ideals are gw - ideal . the second chapter , generalize some results of gp - v - ring to gp - v - ring , discuss regularity of gp - v ' - ring . it is shown that ( 1 ) r is left self - injective regular with non - zero socle iff r is left gp - v - ring with soc ( rr ) = soc ( rr ) and r contains an injective maximal left ideal
第一章主要將“ duo -環(huán)”條件替換成“每一極大左(右)理想是gw -理想”條件,研究在此條件下, gp - v -環(huán)的強(qiáng)正則性,證明了: ( 1 ) r是強(qiáng)正則環(huán)當(dāng)且僅當(dāng)r是左gp - v -環(huán)且r的每一極大左理想是廣義弱理想; ( 2 ) r是強(qiáng)正則環(huán)當(dāng)且僅當(dāng)r是左gp - v -環(huán)且r的每一極大右理想是廣義弱理想,第二章,主要將gp - v -環(huán)上一些結(jié)果推廣到gp - v -環(huán)上,討論gp - v -環(huán)的正則性,證明了: ( 1 ) r是左自?xún)?nèi)射正則環(huán)且soc ( _ rr ) 0當(dāng)且僅當(dāng)r是包含內(nèi)射極大左理想的gp - v -環(huán),且soc ( _ rr ) = soc ( r _ r ) ; ( 2 ) r是正則環(huán)且每一極大本質(zhì)左理想是理想當(dāng)且僅當(dāng)r是左gp -內(nèi)射的左gp - v -環(huán)且每一極大本質(zhì)左理想是理想。 - It's difficult to find maximal right ideal in a sentence. 用maximal right ideal造句挺難的